Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38723608

RESUMO

Gamma-prefoldin (γPFD), a unique chaperone found in the extremely thermophilic methanogen Methanocaldococcus jannaschii, self-assembles into filaments in vitro, which so far have been observed using transmission electron microscopy and cryo-electron microscopy. Utilizing three-dimensional stochastic optical reconstruction microscopy (3D-STORM), here we achieve ∼20 nm resolution by precisely locating individual fluorescent molecules, hence resolving γPFD ultrastructure both in vitro and in vivo. Through CF647 NHS ester labeling, we first demonstrate the accurate visualization of filaments and bundles with purified γPFD. Next, by implementing immunofluorescence labeling after creating a 3xFLAG-tagged γPFD strain, we successfully visualize γPFD in M. jannaschii cells. Through 3D-STORM and two-color STORM imaging with DNA, we show the widespread distribution of filamentous γPFD structures within the cell. These findings provide valuable insights into the structure and localization of γPFD, opening up possibilities for studying intriguing nanoscale components not only in archaea but also in other microorganisms.

2.
Small ; : e2311661, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38597694

RESUMO

Electronically conductive protein-based materials can enable the creation of bioelectronic components and devices from sustainable and nontoxic materials, while also being well-suited to interface with biological systems, such as living cells, for biosensor applications. However, as proteins are generally electrical insulators, the ability to render protein assemblies electroactive in a tailorable manner can usher in a plethora of useful materials. Here, an approach to fabricate electronically conductive protein nanowires is presented by aligning heme molecules in proximity along protein filaments, with these nanowires also possessing charge transfer abilities that enable energy harvesting from ambient humidity. The heme-incorporated protein nanowires demonstrate electron transfer over micrometer distances, with conductive atomic force microscopy showing individual nanowires having comparable conductance to other previously characterized heme-based bacterial nanowires. Exposure of multilayer nanowire films to humidity produces an electrical current, presumably through water molecules ionizing carboxyl groups in the filament and creating an unbalanced total charge distribution that is enhanced by the heme. Incorporation of heme and potentially other metal-center porphyrin molecules into protein nanostructures could pave the way for structurally- and electrically-defined protein-based bioelectronic devices.

3.
Biomolecules ; 11(4)2021 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-33919657

RESUMO

EPHA3, a member of the EPH family, is overexpressed in various cancers. We demonstrated previously that EPHA3 is associated with radiation resistance in head and neck cancer via the PTEN/Akt/EMT pathway; the inhibition of EPHA3 significantly enhances the efficacy of radiotherapy in vitro and in vivo. In this study, we investigated the mechanisms of PTEN regulation through EPHA3-related signaling. Increased DNA methyltransferase 1 (DNMT1) and enhancer of zeste homolog 2 (EZH2) levels, along with increased histone H3 lysine 27 trimethylation (H3K27me3) levels, correlated with decreased levels of PTEN in radioresistant head and neck cancer cells. Furthermore, PTEN is regulated in two ways: DNMT1-mediated DNA methylation, and EZH2-mediated histone methylation through EPHA3/C-myc signaling. Our results suggest that EPHA3 could display a novel regulatory mechanism for the epigenetic regulation of PTEN in radioresistant head and neck cancer cells.


Assuntos
Repressão Epigenética , Neoplasias de Cabeça e Pescoço/genética , PTEN Fosfo-Hidrolase/genética , Tolerância a Radiação , Receptor EphA3/genética , Linhagem Celular Tumoral , DNA (Citosina-5-)-Metiltransferase 1/genética , DNA (Citosina-5-)-Metiltransferase 1/metabolismo , Metilação de DNA , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Neoplasias de Cabeça e Pescoço/metabolismo , Neoplasias de Cabeça e Pescoço/radioterapia , Código das Histonas , Humanos , PTEN Fosfo-Hidrolase/metabolismo , Receptor EphA3/metabolismo
4.
Angew Chem Int Ed Engl ; 59(18): 7024-7028, 2020 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-31957098

RESUMO

Long-chain aliphatic amines such as (S,Z)-heptadec-9-en-7-amine and 9-aminoheptadecane were synthesized from ricinoleic acid and oleic acid, respectively, by whole-cell cascade reactions using the combination of an alcohol dehydrogenase (ADH) from Micrococcus luteus, an engineered amine transaminase from Vibrio fluvialis (Vf-ATA), and a photoactivated decarboxylase from Chlorella variabilis NC64A (Cv-FAP) in a one-pot process. In addition, long chain aliphatic esters such as 10-(heptanoyloxy)dec-8-ene and octylnonanoate were prepared from ricinoleic acid and oleic acid, respectively, by using the combination of the ADH, a Baeyer-Villiger monooxygenase variant from Pseudomonas putida KT2440, and the Cv-FAP. The target compounds were produced at rates of up to 37 U g-1 dry cells with conversions up to 90 %. Therefore, this study contributes to the preparation of industrially relevant long-chain aliphatic chiral amines and esters from renewable fatty acid resources.


Assuntos
Álcool Desidrogenase/metabolismo , Aminas/metabolismo , Carboxiliases/metabolismo , Ésteres/metabolismo , Ácido Oleico/metabolismo , Ácidos Ricinoleicos/metabolismo , Aminas/química , Chlorella/enzimologia , Ésteres/química , Micrococcus luteus/enzimologia , Estrutura Molecular , Ácido Oleico/química , Processos Fotoquímicos , Ácidos Ricinoleicos/química
5.
J Agric Food Chem ; 66(40): 10608-10616, 2018 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-30251539

RESUMO

Curcumin is a yellow-colored ingredient in dietary spice turmeric ( Curcuma longa Linn). This nontoxic polyphenol has antitumor, anti-inflammatory, apoptotic, and antioxidant activities. The ingested curcumin is reduced to multihydrated forms with more potent therapeutic potentials by the curcumin reductase (CurA) from commensal Escherichia coli. In this study, we demonstrated that Vibrio vulnificus CurA ( VvCurA) with 87% sequence similarity to the E. coli CurA exhibits the curcumin-reducing activity through spectrophotometric detection of NADPH oxidation and high performance liquid chromatographic analysis of curcumin consumption and product generation. Afterward, we determined the crystal structures of VvCurA and the VvCurA/NADPH complex, and made the in silico model of the VvCurA/NADPH/curcumin ternary complex through induced fit docking. Based on structural information, active site residues that play critical roles in catalysis have been identified and characterized by mutational and kinetic studies, leading us to propose the reaction mechanism of CurA.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Curcumina/metabolismo , Oxirredutases/química , Oxirredutases/metabolismo , Vibrio vulnificus/enzimologia , Proteínas de Bactérias/genética , Biocatálise , Domínio Catalítico , Curcumina/química , Cinética , Simulação de Acoplamento Molecular , NADP/metabolismo , Oxirredutases/genética , Vibrio vulnificus/química , Vibrio vulnificus/genética
6.
J Biotechnol ; 281: 161-167, 2018 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-30016739

RESUMO

Fatty acids have a low permeability through the cell membrane. Therefore, the intracellular biotransformation of fatty acids can be slow due to supply limitations. The effects of expression level of the fatty acid transporter FadL in Escherichia coli on the biotransformations were investigated. The enhanced expression of FadL led to 5.5-fold increase of the maximum reaction rate Vmax (i.e., 200 µmol/min per g dry cells (200 U/g dry cells)) of the recombinant E. coli expressing a hydratase of Stenotrophomonas maltophilia in the periplasm with respect to hydration of oleic acid. The FadL expression level was also critical for oxidation of 12- and 10- hydroxyoctadecanoic acid by the recombinant E. coli expressing an alcohol dehydrogenase (ADH) of Micrococcus luteus. In addition, the multistep biotransformation of ricinoleic acid into the ester (i.e., (Z)-11-(heptanoyloxy)undec-9-enoic acid) by the recombinant E. coli expressing the ADH of M. luteus and a Baeyer-Villiger monooxygenase of Pseudomonas putida KT2440 was 2-fold increased to 40 U/g dry cells with expression of FadL to an appropriate level. The FadL expression level is one of the critical factors to determine whole-cell biotransformation rates of not only long chain fatty acids but also hydroxy fatty acids. This study may contribute to whole-cell biocatalyst engineering for biotransformation of hydrophobic substances.


Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Membrana Celular/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas de Transporte de Ácido Graxo/metabolismo , Ácidos Graxos/metabolismo , Álcool Desidrogenase/genética , Bactérias/genética , Bactérias/metabolismo , Proteínas da Membrana Bacteriana Externa/genética , Biotransformação , Proteínas de Escherichia coli/genética , Proteínas de Transporte de Ácido Graxo/genética , Hidroliases/genética , Oxigenases de Função Mista/genética , Ácido Oleico/metabolismo
7.
Nutr Metab (Lond) ; 14: 48, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28781602

RESUMO

BACKGROUND: Dietary fructose can rapidly cause fatty liver in animals through de novo lipogenesis (DNL) and contribute to the development and severity of nonalcoholic fatty liver disease (NAFLD). In response to diverse cellular insults including endoplasmic reticulum (ER) and oxidative stress, phosphorylation of the eukaryotic translation initiation factor 2 alpha subunit (eIF2α) attenuates general translation initiation, allowing cells to conserve resources and initiate adaptive gene expression to restore homeostasis. The present study aimed to investigate the role of eIF2α phosphorylation in protecting against NAFLD induced by high fructose ingestion in a hepatocyte-specific eIF2α-phosphorylation-deficient mouse model. METHODS: Hepatocyte-specific non-phosphorylatable (S51A) eIF2α knock-in (A/A;fTg/0;CreHep/0, A/AHep ) mice were generated by crossing A/A;fTg/fTg mice with the floxed WT eIF2α transgene (fTg) with Alfp-Cre recombinase transgenic S/A;CreHep/0 (S/A-CreHep ) mice. Hepatocyte-specific eIF2α-phosphorylation-deficient 3-month-old mice or 12-month-old mice were fed a 60% high fructose diet (HFrD) for 16 or 5 wks, and the effects of eIF2α-phosphorylation deficiency on NADP/NADPH and GSSG/GSH levels, ROS-defense gene expression, oxidative damage, cell death, and fibrosis were observed. RESULTS: Prolonged fructose feeding to mice caused dysregulation of the unfolded protein response (UPR) sensor activation and UPR gene expression, and then led to decreased expression of several ROS defense genes including glutathione biogenesis genes. Nonetheless, these changes were not sufficient to induce the death of eIF2α phosphorylation-sufficient hepatocytes. However, there was a substantial increase in hepatocyte death and liver fibrosis in fructose-fed middle-aged mice deficient in hepatocyte-specific eIF2α phosphorylation because of diminished antioxidant capacity due to reduced expression of antioxidant enzymes (GPX1 and HO-1) and lower NADPH and glutathione levels, as well as a possible increase in ROS-induced damage from infiltrating NOX2-expressing leukocytes; all this led to a vicious cycle of hepatocyte death and leukocyte infiltration. CONCLUSION: Our findings suggest that eIF2α phosphorylation maintains NADPH and GSH levels and controls the expression of ROS-defense genes, thereby protecting hepatocytes from oxidative stresses induced by fructose metabolism.

8.
Invest New Drugs ; 32(3): 400-11, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24202729

RESUMO

PURPOSE: CKD-516 is a benzophenone analog in which the B ring is modified by replacement with a carbonyl group. The study assessed CKD-516 as a vascular disrupting agent or anti-cancer drug. METHODS: To assess the effect of S516 on vascularization, we analyzed the effect on human umbilical vein endothelial cells (HUVECs). To determine the inhibition of cell proliferation of S516, we used H460 lung carcinoma cells. The alteration of microtubules was analyzed using immunoblot, RT-PCR and confocal imaging. To evaluate the anti-tumor effects of gemcitabine and/or CKD-516, H460 xenograft mice were treated with CKD-516 (2.5 mg/kg) and/or gemcitabine (40 mg/kg), and tumor growth was compared with vehicle-treated control. For histologic analysis, liver, spleen and tumor tissues from H460 xenograft mice were obtained 12 and 24 h after CKD-516 injection. RESULTS: Cytoskeletal changes of HUVECs treated with 10 nM S516 were assessed by immunoblot and confocal imaging. S516 disrupted tubulin assembly and resulted in microtubule dysfunction, which induced cell cycle arrest (G2/M). S516 markedly enhanced the depolymerization of microtubules, perhaps due to the vascular disrupting properties of S516. Interestingly, S516 decreased the amount of total tubulin protein in HUVECs. Especially, S516 decreased mRNA expression α-tubulin (HUVECs only) and ß-tubulin (HUVECs and H460 cells) at an early time point (4 h). Immunocytochemical analysis showed that S516 changed the cellular microtubule network and inhibited the formation of polymerized microtubules. Extensive central necrosis of tumors was evident by 12 h after treatment with CKD-516 (2.5 mg/kg, i.p.). In H460 xenografts, CKD-516 combined with gemcitabine significantly delayed tumor growth up to 57 % and 36 % as compared to control and gemcitabine alone, respectively. CONCLUSION: CKD-516 is a novel agent with vascular disrupting properties and enhances anti-tumor activity in combination with chemotherapy.


Assuntos
Antineoplásicos/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Benzofenonas/farmacologia , Neoplasias/tratamento farmacológico , Neovascularização Patológica/tratamento farmacológico , Valina/análogos & derivados , Animais , Antineoplásicos/administração & dosagem , Benzofenonas/administração & dosagem , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Desoxicitidina/administração & dosagem , Desoxicitidina/análogos & derivados , Feminino , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Camundongos Mutantes , Microtúbulos/efeitos dos fármacos , Microtúbulos/metabolismo , Neoplasias/patologia , Tubulina (Proteína)/metabolismo , Carga Tumoral/efeitos dos fármacos , Valina/administração & dosagem , Valina/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto , Gencitabina
9.
PLoS One ; 8(1): e53900, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23326531

RESUMO

KML001 is sodium metaarsenite, and has shown cytotoxic activity in human tumor cell lines. The anti-cancer mechanism of KML001 involves cancer cell destruction due to DNA damage at the telomeres of cancer cell chromosomes. In this study, we assessed the vascular disrupting properties of KML001 and investigated whether KML001 as VDA is able to increase anti-tumor activity in irinotecan combined treatment. We used a murine model of the CT26 colon carcinoma cell line. CT26 isograft mice treated intraperitoneally with 10 mg/kg KML001 displayed extensive central necrosis of tumor by 24 h. The vascular disrupting effects of KML001 were assessed by dynamic contrast enhanced magnetic resonance imaging. Gadopentetic acid-diethylene triaminepentaacetic acid contrast enhancement was markedly decreased in KML001-treated mice one day after treatment, whereas persistently high signal enhancement was observed in mice injected with saline. Rate constant K(ep) value representing capillary permeability was significantly decreased (p<0.05) in mice treated with KML001. Cytoskeletal changes of human umbilical vein endothelial cells (HUVECs) treated with 10 uM KML001 were assessed by immune blotting and confocal imaging. KML001 degraded tubulin protein in HUVECs, which may be related to vascular disrupting properties of KML001. Finally, in the mouse CT26 isograft model, KML001 combined with irinotecan significantly delayed tumor growth as compared to control and irinotecan alone. These results suggest that KML001 is a novel vascular disrupting agent, which exhibits significant vascular shut-down activity and enhances anti-tumor activity in combination with chemotherapy. These data further suggest an avenue for effective combination therapy in treating solid tumors.


Assuntos
Arsenitos/administração & dosagem , Camptotecina/análogos & derivados , Neoplasias do Colo/tratamento farmacológico , Neoplasias Experimentais/tratamento farmacológico , Neovascularização Patológica/tratamento farmacológico , Compostos de Sódio/administração & dosagem , Animais , Antineoplásicos/administração & dosagem , Protocolos de Quimioterapia Combinada Antineoplásica , Camptotecina/administração & dosagem , Linhagem Celular Tumoral , Neoplasias do Colo/patologia , Dano ao DNA/efeitos dos fármacos , Sinergismo Farmacológico , Células Endoteliais da Veia Umbilical Humana , Humanos , Irinotecano , Camundongos , Neoplasias Experimentais/patologia , Neovascularização Patológica/patologia , Telômero/efeitos dos fármacos
10.
World J Gastroenterol ; 13(24): 3396-9, 2007 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-17659684

RESUMO

Gastrointestinal stromal tumor (GIST) represents the most common kind of mesenchymal tumor that arises from the alimentary tract. GIST is currently defined as a gastrointestinal tract mesenchymal tumor showing CD117 (c-kit protein) positivity at immunohistochemistry. Throughout the whole length of the gastrointestinal tract, GIST arises most commonly from the stomach followed by the small intestine, the colorectum, and the esophagus. Only 3%-5% of GISTs occur in the duodenum, and especially, if GIST arises from the C loop of the duodenum, it can be difficult to differentiate from the pancreas head mass because of its anatomical proximity. Here, we report a case of duodenal GIST, which was assessed as a pancreatic head tumor preoperatively.


Assuntos
Neoplasias Duodenais/diagnóstico , Tumores do Estroma Gastrointestinal/diagnóstico , Neoplasias Pancreáticas/diagnóstico , Diagnóstico Diferencial , Neoplasias Duodenais/patologia , Tumores do Estroma Gastrointestinal/patologia , Humanos , Masculino , Pessoa de Meia-Idade , Neoplasias Pancreáticas/patologia , Neoplasias Gástricas/cirurgia , Tomografia Computadorizada por Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...